

Biology Higher level Paper 2

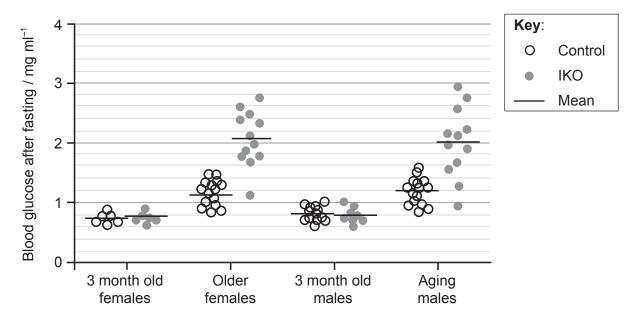
	Car	ıdida	te se	ssior	num	nber	
					ļ		

2 hours 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer two questions.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [72 marks].

205004


International Baccalaureate®
Baccalauréat International
Bachillerato Internacional

Section A

Answer all questions. Write your answers in the boxes provided.

1. Diabetes is often associated with the failure of the β (beta) cells in the pancreas, but it is unclear what actually causes this failure. FoxO1 is a protein which acts as a transcription factor to regulate the expression of genes involved in cell growth. FoxO1 also regulates increase in number and differentiation in cells such as pancreatic β cells.

A study was conducted using mice lacking the gene for FoxO1 in β cells (IKO) as well as normal (control) mice. Blood glucose levels after fasting were compared for four groups of mice: young (3 months old) male mice, young (3 months old) female mice, older females (who have had several pregnancies) and aging males (16–20 months).

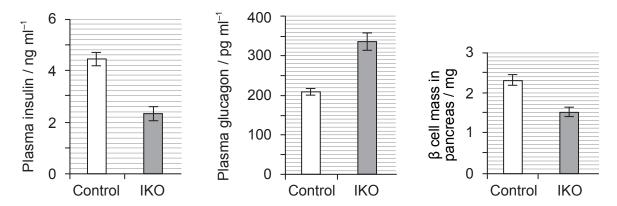
[Source: Chutima Talchai, Shouhong Xuan, Hua V. Lin, Lori Sussel, Domenico Accili, "Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure", *Cell*, Volume 150, Issue 6, 14 September 2012, Pages 1223–1234]

Compare blood glucose levels after fasting in young control mice and young IKO mice

without FoxO1.	

(This question continues on the following page)

(a)



(b)	Aging and having pregnancies are considered to be physiological stresses. Deduce the effect of stress on blood glucose levels.	[2]
(c)	Outline the relationship between blood glucose levels after fasting and lack of FoxO1 in the mice studied.	[2]
(c)	·	

Turn over

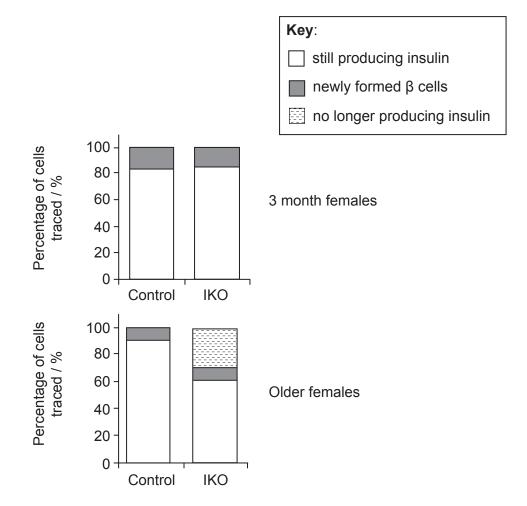
The levels of pancreatic hormones and β cell mass in older female control mice and older female IKO mice lacking FoxO1 were then investigated.

[Source: Chutima Talchai, Shouhong Xuan, Hua V. Lin, Lori Sussel, Domenico Accili, "Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure", *Cell*, Volume 150, Issue 6, 14 September 2012, Pages 1223–1234]

(d)	Calculate the percentage difference in $\boldsymbol{\beta}$ cell mass of the IKO mice compared to the control mice.	[2]
	%	
(e)	State the correlation between lack of FoxO1 and pancreatic hormones in mice.	[1]

(This question continues on page 6)

Please do not write on this page.


Answers written on this page will not be marked.

Turn over

To examine whether the changes observed were due to lack of β cell function or change in β cell number, investigators traced marked cells. They were able to determine if cells were:

- still producing insulin
- newly formed β cells
- no longer producing insulin.

[Source: Chutima Talchai, Shouhong Xuan, Hua V. Lin, Lori Sussel, Domenico Accili, "Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure", *Cell*, Volume 150, Issue 6, 14 September 2012, Pages 1223–1234]

(f)	State which group of cells showed the least change in the mice studied.	[1]

(g)	Deduce the effects of aging on the distribution of cell types in mice.	[2]
	pothesis has been suggested that diabetes is caused by β cells losing their ability to act cells, not by the death of β cells. In other words they dedifferentiate.	
(h)	Using all the information provided, discuss whether the data support this hypothesis.	[2]
(i)	When there are high blood glucose levels, more FoxO1 is found in the nucleus of the cell than in the cytoplasm. Suggest a role of FoxO1 considering this and the data.	[2]

Turn over

2.	A study of 600 adolescents in Sweden she	owed that i	milk consump	tion has a pos	itive effect	on
	height which shows continuous variation.	However,	milk contains	lactose which	some pec	ple
	can digest but some cannot.					

(i)	State the pattern of inheritance that contributes to continuous variation.	[1]
(ii)	Explain the production of lactose-free milk.	[3]

(This question continues on the following page)

(a)

(b) The diagram below shows the structure of lactase.

[Source: Kindly provided by RL Miesfeld, The University of Arizona, Tucson, AZ USA]

(i)	Identify the protein structures indicated by I and II.	[1]
	l:	
	II:	
(ii)	Describe how structure I is held together.	[2]

Turn over

(111)	fibrous proteins.	[2]

Please do not write on this page.

Answers written on this page will not be marked.

Turn over

		Diagram removed for copyright reasons	
(a)	(i)	State whether this plant is dicotyledonous or monocotyledonous.	
(a)	(i)	State whether this plant is dicotyledonous or monocotyledonous.	
(a)	(i)	State whether this plant is dicotyledonous or monocotyledonous.	
(a)	(i)	State whether this plant is dicotyledonous or monocotyledonous. State two features visible in the diagram above that indicate this.	
(a)			
(a)			

(b)	(i)	Label the diagram of <i>Solanum</i> on page 12 to show the name of a structure specialised for food storage.	[1]
	(ii)	Outline the transport of products of photosynthesis to the storage structure.	[3]

Turn over

Section B

Answer **two** questions. Up to two additional marks are available for the construction of your answers. Write your answers in the boxes provided.

Draw a labelled diagram of the human adult male reproductive system. 4. (a) [5] (b) Compare the processes of spermatogenesis and oogenesis. [8] (c) Describe the consequences of the potential overproduction of offspring. [5] 5. (a) Outline the processes that occur during the first division of meiosis. [6] (b) Prior to cell division, chromosomes replicate. Explain the process of DNA replication in prokaryotes. [8] Outline outcomes of the human genome project. [4] (c) 6. Draw a labelled diagram to show the structure of a motor neuron. [4] (a) (b) Explain how skeletal muscle contracts. [8] Active skeletal muscle requires a good supply of oxygen. Outline the mechanism of (c) ventilation in the lungs. [6] 7. (a) Draw a labelled diagram to show the structure of the plasma membrane. [5] The light-dependent reactions in photosynthesis take place on the thylakoid (b) membranes. Explain the light-dependent reactions. [8] (c) Outline two factors that affect the rate of photosynthesis. [5]

Turn over

Turn over

